How Wind and Other Renewables Really Affect Generating Cost: A Portfolio Risk Approach

'Shifting the Grounds for Debate'

Shimon Awerbuch, Ph.D. Energy-Regulatory Economics and Finance

<u>www.awerbuch.com</u> s.awerbuch@sussex.ac.uk

Tyndall Centre Visiting Fellow SPRU Energy Group ? University of Sussex

6th Inter-Parliamentary Meeting Renewable Energy and Energy Efficiency

> Edinburgh, UK 7 October 2005

SPRU Energy Group University of Sussex, UK

- ? SPRU: One of the oldest & largest institutes for the study of science and technology policy
 - 50 faculty, 70 Ph.D. / 50 MSc students
 - Science & Technology Policy, Technology and Sustainability

? Energy Group Focus

 Transition to a low carbon, sustainable energy economy in the UK, including governance and appraisal issues

REFLECTING MARKET RISK

Valuing Energy Technologies Necessarily Involves an Assessment of Financial Risk

Market Risk Affects kWh Cost Estimates

- ? Risk affects value and economic expectations
 - Gas → variable rate mortgage
- ? Engineering kWh cost estimates ignore risk-have no economic interpretation
 - Cost models developed around the time of the Model-T FORD
 - Should carry no weight in policy making

Talking about kWh cost without also talking about risk is like watching a movie...... With the sound turned off! How to Estimate Meaningful Levelized Risk-Adjusted kWh Costs for Gas, Wind, etc.

? Invite large number of investors to submit *firm, binding* 20-year price bids, non-dischargeable in bankruptcy

- ? Assuming no collusion, these bids represent a reasonably unbiased estimate of true kWh cost over each technology's life
- ? Differs radically from engineering estimates

Ignoring Risk Distorts Wind-Gas Comparisons: DTI and Finance-Theory Estimates

Portfolio Effect: The Only Free Lunch in Economics!

Astute Asset Combinations Reduce Cost at any Given Level of Risk

© Shimon Awerbuch. October-2005

s.awerbuch@sussex.ac.uk

Even with risk-adjustment, "*Least-cost*" make little sense in today's uncertain environment

- ? Energy planners need to follow financial investors who routinely deal with risk
 - No one can predict stock markets or fossil prices
- ? Investors hold efficient, diversified, balanced portfolios - Best hedge against uncertain future
- ? Is gas cheaper than renewables?.... it matters little – Even if true today, picture could change dramatically
- ? Renewables question not <u>if</u> but only <u>how much</u>
 → Every optimal portfolio requires some fixed-cost technology

Nobel Laureate Harry Markowitz Taught the World About Portfolios

- ? Portfolio of risky equity stocks expected yield = 10%
- ? Add risk-free government bonds with expected yield $= \frac{3\%}{2}$
- ? Resulting Overall Yield? ??

? Resulting yield will be >10% at the same level of portfolio risk

Portfolio Effect Illustration Risk and Return for A Portfolio of Risky Assets

S. Awerbuch, "Getting It Right: The Real Cost Impacts of a Renewables Portfolio Standard," PUF, 2-15-2000.

© Shimon Awerbuch. October-2005

s.awerbuch@sussex.ac.uk

Renewables Help the Generating Mix They Affect Portfolio Cost *and* Risk

2010 UK Portfolio Optimization Adding Wind Does Not Raise Cost

Scotland Projected 2010 Generating Mix and Optimized Portfolios

Technology Generating Costs (p/kWh - includes system costs)

Coal: 5.0 - Gas: 3.5 - Nuclear: 4.0 - Wind: 4.9 / 7.6 on/off shore

	2010 NGC	Optimized	Optimized Portfolios			
	Target Mix	'Equal Cost'	'Equal Risk'			
Portfolio Cost	4.5 <i>p</i> /kWh	4.5 <i>p</i> /kWh	4.2 <i>p</i> /kWh			
Portfolio Risk	4.0%	3.3%	4.0%			
Gas-Coal Share	45%	36%	38%			
Nuclear Share	26%	26%	26%			
Wind Share	23%	34%	31%			

Adding Wind to the EU Generating Mix Lowers Cost and Risk

s.awerbuch@sussex.ac.uk

Renewable Energy and the Power Grid:

RE Can Help Re-conceptualize Electricity Production & Delivery Paradigms

Issues Surrounding the Integration of Wind and Other 'Intermittent' Renewables Are Not New

? Exploiting new technology always requires changes in Organizations, Support Systems & Infra-structures

-Bessemer, Word Processing

? Current debate on wind integration is misdirected

 Focuses on shoehorning wind into inappropriate electricity production and delivery systems

? Allows wind to ride but only side-saddle

Networks of the Future: Informated, Decentralized and Market-Driven

? Facilitate Markets - Deliver Market-driven products

Not just transporting commodity electrons

? Exploit technology attributes

- Match to load's need
- Do not force all sources to resemble gas turbines
- ? Promote diversity: create opportunities for all new resources

Future networks must enable

re-conceptualized *just-in-time, mass-customized* electricity production/delivery paradigms

Intermittency- Capacity Credit (ELCC)

- ? Capacity-credit: conventional generation capacity that can be replaced with wind
 - Function of capacity-factor and coincidence with system peak
- ? Every grid asset requires backup
 - e.g. 500-MW fossil generator with 15% forced outage rate (.85 capacity-factor)
 - → Capacity-credit might be 78% (Milligan, NREL, 2002)
- ? Backup issue is complex
- ? Research sugests wind resources are sufficiently reliable or diversified
 - 20% Wind Integration < 0.5p or 0.4 Euro-cents/kWh</p>

© Shimon Awerbuch. October-2005

s.awerbuch@sussex.ac.uk

Capacity Credit

- ? Some argue wind unreliable, intermittent and "non-dispatchable"
- ? Recent studies suggest wind deployment imposes only small additional system costs
 - Dale, Milborrow, et. al., National Grid Transco and UMIST (2004), and German DENA Grid Study (2005):
 - Cost of 20% wind penetration = 0.5p/kWh in the UK (5% of average domestic prices) and 0.4 Euro-cent in Germany

"There does not appear to be any technical reason why a substantial proportion of the (UK's) electricity requirements could not be delivered by wind." (Dale, Milborrow, et. al., 2004)

Conclusion: Shifting The Grounds for Debate:

? Standard risk-adjusted finance cost models show kWh-cost for most renewables is *less* than gas-fired electricity

? Modern Portfolio Theory Says

-Even if you believe RETs cost more..... Adding them to a fossil generating mix *reduces* overall kWh cost

? Exploiting new 'broadly-applicable' technology

 Requires changes in accounting, organizations & supporting systems/infra-structures

THANK YOU

Shimon Awerbuch

Exploiting the Oil-GDP Effect to Promote Renewables and Energy Security

Shimon Awerbuch, Ph.D.

Energy-Regulatory Economics and Finance www.awerbuch.com s.awerbuch@sussex.ac.uk

Tyndall Centre Visiting Fellow SPRU Energy Group ? University of Sussex

6th Inter-Parliamentary Meeting Renewable Energy and Energy Efficiency

> Edinburgh, UK 8 October 2005

RETs Provide Important Portfolio Benefits Without Increasing Cost.... But Lenders/Investors Cannot Capture These

Benefit	Policymaker Awareness	
? Environmental Benefits	HIGH	
- Widely understood– undervalued by regulators		
? Help Mitigate Market Power		
 Help Unlock Benefits of Liberalization by Enhancing Competition along Power Network 	MOD-LOW	
 Requires NO restructuring & incentives 		
 Security: Mitigate/Diversify Fossil Risk Reduce overall electricity generating costs Minimize exposure to macroeconomic fossil risk 	LOW	
Most significant aspect of energy secu	rity today	

Valuing Renewable Energy Technologies

Macroeconomic Fossil Risk

The Oil-GDP Externality

The Macroeconomic Consequences of Fossil Price Risk: A Major External Cost

- ? Fossil volatility hurts employment & GDP growth in oil consuming and producing nations
 - Widely accepted in academic literature and the press
- ? Macroeconomic cost of 2000-04 oil spikes in EU: Approximately €400- €700 Billion
 - Offsets *entire* 2020/20% RET investment needs estimated by EWEA/EREC
- ? Policy makers seem aware— but apparently do not see connection to renewables Rodrigo Rato IMF

Where/What is the Policy Disconnect?

Oil-GDP Effect:

% GDP Change for Oil-Price Doubling

Importers				Exporters			
	GDP		_		GDP		
Country	ntry Elasticity Countr		Country	Elasticity			
Taiwan	-8.4%		_	Indonesia	-4.3%		
Hong Kong	-6.5%			Malaysia	-5.6%		
Japan	-5.8%			Norway	5.1%		
South Korea	-8.7%						
Philippines	-3.6%	<u>a</u>	<u>/</u>				
Singapore	-4.2%						
Thailand	-8.4%						
France	-9.8%						
Germany	-8.1%						
Greece	-2.4%						
U.K.	-3.8%						
Average	6.3%			Average	-1.6%		
a. Statistically Insignificant.							
Source: Paul Leibey, IEA/ASEAN Workshop, April 2004							

© Shimon Awerbuch. October-2005

Avoided GDP Losses for 10% RE Addition

Aveided ODD

					Avoided GDP Losses			
	Loss Estimation				(USD \$Billions)			
GDP Elasticity Measure	GDP Elasticty	Oil Price Reduction	GDP		211	FIL-25	OFCD	World
				-	00	LU-2J		WOITU
PANEL I: Long Term OffGa	is Correlatio	m(?=.75)			_			
Pre-1986 Average	-9.8%	-62%	0.61%		\$66	\$67	\$113	\$221
1986 Inclusive Average	-7.3%	-62%	0.45%		\$49	\$49	\$84	\$164
Leiby (2004) Average	-6.4%	-62%	0.40%		\$43	\$43	\$74	\$144
				Averages	\$53	\$53	\$90	\$176
PANEL II: Using Gas-Only GDP Elasticity (? = .40)								
	Gasonly	Gas Price	GDP					
	Elasticity	Reduction	Loss %					
Pre-1986 Average	-3.9%	-8.4%	0.33%		\$36	\$36	\$61	\$119
1986 Inclusive Average	-2.9%	-8.4%	024%		\$27	\$27	\$45	\$89
Leiby (2004) Average	-2.6%	-8.4%	021%		\$23	\$23	\$40	\$78
				Averages	\$29	\$29	\$49	\$95
a Based on USEIA RESE t	argets			GDP	\$10,882	\$10,970	\$18,659	\$36,356

© Shimon Awerbuch. October-2005

Required RES-E Investment for OECD/EU and Resulting GDP Offset

© Shimon Awerbuch. October-2005

s.awerbuch@sussex.ac.uk

What's the "Catch?"

- ? Adding Renewables Enhances Energy Security
 - Helps avoid sizeable GDP losses

? But Doesn't it Raise Generating Cost?

- Adjusted for market risk, stand-alone cost of many renewables is lower than gas
- Renewables reduce overall portfolio generating costs-- even if their stand-alone costs are higher

Optimized Portfolios Enhance Energy Security by Reducing Exposure to Fossil Volatility

Energy Security: Powerful Benefit of Properly Optimized Generating Mixes

- ? Everyone *talks* about energy diversity & security
 - Little analytic work exists
- ? Diversity poorly understood
 - Not a "mix and match" concept
 - Diversity \rightarrow uncorrelated assets

- ? Security focuses on catastrophic supply interruptions geo-political
- **?** But–Oil (and gas) Traded in World Markets
 - Security may be better conceived in market terms
 - Reflects costly exposure to fossil price volatility

RETs Provide Another Important... but Poorly Recognized Energy Security Benefit

- **? They Mitigate fossil price volatility intuitive**
- ? But they do so in a Counter-cyclical Manner: a form of "national insurance"
 - (R. C. Lind & Nobel Laureate J. Kenneth Arrow, 1984)
- ? Payoff occurs when economy is doing poorly

Energy security is reduced when nations hold inefficient portfolios that are needlessly exposed to fossil risk

DTI 2010 Technology Cost and Estimated Risk DTI Projected 2010 and 2020 Target Mixes

© Shimon Awerbuch. October-2005

s.awerbuch@sussex.ac.uk

Enhanced Energy Security: Powerful Joint Benefit of Optimized Generating Mixes

- ? *Efficient* generating mixes with optimized renewables shares:
 - Minimize generating cost
 - Minimize needless exposure to Oil-GDP induced macroeconomic losses

Why Integrate Renewables into the Power Network?

? Create Sizeable Portfolio Benefits

- Reduce overall generating cost and risk
- ? Enhance energy security/diversity
- **? Reduce Market Power:**
 - Help open markets & unlock the potential benefits of liberalization

The Power Grid Plays a Pivotal Role in Implementing These Crucial Objectives

THANK YOU

Shimon Awerbuch